Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Chemosphere ; 356: 141780, 2024 May.
Article in English | MEDLINE | ID: mdl-38604516

ABSTRACT

The degradation of three anti-cancer drugs (ADs), Capecitabine (CAP), Bicalutamide (BIC) and Irinotecan (IRI), in ultrapure water by ozonation and UV-irradiation was tested in a bench-scale reactor and AD concentrations were measured through ultra-high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS). A low-pressure mercury UV (LP-UV) lamp was used and degradation by UV (λ = 254 nm) followed pseudo-first order kinetics. Incident radiation in the reactor was measured via chemical actinometry using uridine. The quantum yields (φ) for the degradation of CAP, BIC and IRI were 0.012, 0.0020 and 0.0045 mol Einstein-1, respectively. Ozone experiments with CAP and IRI were conducted by adding ozone stock solution to the reactor either with or without addition of tert-butanol (t-BuOH) as radical quencher. Using this experimental arrangement, no degradation of BIC was observed, so a semi-batch setup was employed for the ozone degradation experiments of BIC. Without t-BuOH, apparent second order reaction rate constants for the reaction of the ADs with molecular ozone were determined to be 3.5 ± 0.8 ∙ 103 L mol-1 s-1 (CAP), 7.9 ± 2.1 ∙ 10-1 L mol-1 s-1 (BIC) and 1.0 ± 0.3 ∙ 103 L mol-1 s-1 (IRI). When OH-radicals (∙OH) were quenched, rate constants were virtually the same for CAP and IRI. For BIC, a significantly lower constant of 1.0 ± 0.5 ∙ 10-1 L mol-1 s-1 was determined. Of the tested substances, BIC was the most recalcitrant, with the slowest degradation during both ozonation and UV-irradiation. The extent of mineralization was also determined for both processes. UV irradiation was able to fully degrade up to 80% of DOC, ozonation up to 30%. Toxicity tests with Daphnia magna (D. magna) did not find toxicity for fully degraded solutions of the three ADs at environmentally relevant concentrations.


Subject(s)
Anilides , Antineoplastic Agents , Capecitabine , Irinotecan , Nitriles , Ozone , Tosyl Compounds , Ultraviolet Rays , Water Pollutants, Chemical , Ozone/chemistry , Nitriles/chemistry , Water Pollutants, Chemical/chemistry , Irinotecan/chemistry , Anilides/chemistry , Capecitabine/chemistry , Tosyl Compounds/chemistry , Antineoplastic Agents/chemistry , Kinetics , Tandem Mass Spectrometry , Chromatography, High Pressure Liquid
2.
Pain Res Manag ; 2024: 9989997, 2024.
Article in English | MEDLINE | ID: mdl-38550709

ABSTRACT

Background: Patients undergoing breast surgery are at risk of severe postoperative pain. Several opioid-sparing strategies exist to alleviate this condition. Regional anesthesia has long been a part of perioperative pain management for these patients. Aim: This randomized study examined the benefits of interpectoral and pectoserratus plane block (IPP/PSP), also known as pectoralis nerve plain block, compared with advanced local anesthetic infiltration. Methods: We analyzed 57 patients undergoing partial mastectomy with sentinel node dissection. They received either an ultrasound-guided IPP/PSP block performed preoperatively by an anesthetist or local anesthetic infiltration performed by the surgeon before and during the surgery. Results: Pain measured with the numerical rating scale (NRS) indicated no statistically significant difference between the groups (IPP/PSP 1.67 vs. infiltration 1.97; p value 0.578). Intraoperative use of fentanyl was significantly lower in the IPP/PSP group (0.18 mg vs 0.21 mg; p value 0.041). There was no statistically significant difference in the length of stay in the PACU (166 min vs 175 min; p value 0.51). There were no differences in reported postoperative nausea and vomiting (PONV) between the groups. The difference in postoperative use of oxycodone in the PACU (p value 0.7) and the use of oxycodone within 24 hours postoperatively (p value 0.87) was not statistically significant. Conclusions: Our study showed decreased intraoperative opioid use in the IPP/PSP group and no difference in postoperative pain scores up to 24 hours. Both groups reported low postoperative pain scores. This trial is registered with NCT04824599.


Subject(s)
Anesthetics, Local , Breast Neoplasms , Humans , Female , Anesthetics, Local/therapeutic use , Analgesics, Opioid/therapeutic use , Mastectomy, Segmental , Oxycodone , Prospective Studies , Breast Neoplasms/surgery , Mastectomy/adverse effects , Pain, Postoperative/drug therapy , Pain, Postoperative/etiology
3.
Commun Biol ; 6(1): 1220, 2023 12 01.
Article in English | MEDLINE | ID: mdl-38040868

ABSTRACT

Covering approximately 40% of land surfaces, grasslands provide critical ecosystem services that rely on soil organisms. However, the global determinants of soil biodiversity and functioning remain underexplored. In this study, we investigate the drivers of soil microbial and detritivore activity in grasslands across a wide range of climatic conditions on five continents. We apply standardized treatments of nutrient addition and herbivore reduction, allowing us to disentangle the regional and local drivers of soil organism activity. We use structural equation modeling to assess the direct and indirect effects of local and regional drivers on soil biological activities. Microbial and detritivore activities are positively correlated across global grasslands. These correlations are shaped more by global climatic factors than by local treatments, with annual precipitation and soil water content explaining the majority of the variation. Nutrient addition tends to reduce microbial activity by enhancing plant growth, while herbivore reduction typically increases microbial and detritivore activity through increased soil moisture. Our findings emphasize soil moisture as a key driver of soil biological activity, highlighting the potential impacts of climate change, altered grazing pressure, and eutrophication on nutrient cycling and decomposition within grassland ecosystems.


Subject(s)
Ecosystem , Grassland , Soil/chemistry , Soil Microbiology , Biodiversity
4.
Sci Total Environ ; 857(Pt 3): 159694, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36302424

ABSTRACT

Storms represent a major disturbance factor in forest ecosystems, but the effects of windthrows on soil organic carbon (SOC) stocks are poorly quantified. Here, we assessed the SOC stocks of windthrown forests at 19 sites across Switzerland spanning an elevation gradient from 420 to 1550 m, encompassing a strong climatic gradient. Results show that the effect size of disturbance on SOC stocks increases with the size of the initial SOC stocks. The largest windthrow-induced SOC losses of up to 29 t C ha-1 occurred in high-elevation forests with a harsh climate developing thick organic layers. In contrast, SOC stocks of low-elevation forests with thin organic layers were hardly affected. A mineralization study further revealed high elevation forests to store higher amounts of easily mineralizable C in thick organic layers that got lost following windthrow. These findings are supported by a meta-analysis of available windthrow studies, showing an increase of storm-induced SOC losses with the size of the initial SOC stocks. Modelling simulations further indicate longer-lasting SOC losses and a slower recovery of SOC stocks after windthrow at high compared to low elevations, due to a slower regeneration of mountain forests and associated lower C inputs into soils in a harsh climate. Upscaling the experimental findings/observed patterns by linking them to a data base of Swiss forest soils shows a total SOC loss of ∼0.4 Mt. C for the whole forested area of Switzerland after two major storm events, counteracting the forest net carbon sink of decades. Our study provides strong evidence that the vulnerability of SOC stocks to windthrow is particularly high in forests featuring thick and slowly forming organic layers, such as mountain soils. Thus, the risk of losing SOC to more frequent windthrows in mountain forests strongly limits their potential to mitigate climate change.


Subject(s)
Carbon , Soil , Ecosystem , Forests , Carbon Sequestration
5.
Glob Chang Biol ; 28(20): 5928-5944, 2022 10.
Article in English | MEDLINE | ID: mdl-35795901

ABSTRACT

Central Europe has been experiencing unprecedented droughts during the last decades, stressing the decrease in tree water availability. However, the assessment of physiological drought stress is challenging, and feedback between soil and vegetation is often omitted because of scarce belowground data. Here we aimed to model Swiss forests' water availability during the 2015 and 2018 droughts by implementing the mechanistic soil-vegetation-atmosphere-transport (SVAT) model LWF-Brook90 taking advantage of regionalized depth-resolved soil information. We calibrated the model against soil matric potential data measured from 2014 to 2018 at 44 sites along a Swiss climatic and edaphic drought gradient. Swiss forest soils' storage capacity of plant-available water ranged from 53 mm to 341 mm, with a median of 137 ± 42 mm down to the mean potential rooting depth of 1.2 m. Topsoil was the primary water source. However, trees switched to deeper soil water sources during drought. This effect was less pronounced for coniferous trees with a shallower rooting system than for deciduous trees, which resulted in a higher reduction of actual transpiration (transpiration deficit) in coniferous trees. Across Switzerland, forest trees reduced the transpiration by 23% (compared to potential transpiration) in 2015 and 2018, maintaining annual actual transpiration comparable to other years. Together with lower evaporative fluxes, the Swiss forests did not amplify the blue water deficit. The 2018 drought, characterized by a higher and more persistent transpiration deficit than in 2015, triggered widespread early wilting across Swiss forests that was better predicted by the SVAT-derived mean soil matric potential in the rooting zone than by climatic predictors. Such feedback-driven quantification of ecosystem water fluxes in the soil-plant-atmosphere continuum will be crucial to predicting physiological drought stress under future climate extremes.


Subject(s)
Droughts , Soil , Ecosystem , Forests , Plants , Switzerland , Trees/physiology , Water/physiology
6.
PLoS One ; 17(7): e0271831, 2022.
Article in English | MEDLINE | ID: mdl-35877769

ABSTRACT

Elevational gradients along mountain slopes offer opportunities to study key factors shaping species diversity patterns. Several environmental factors change over short distances along the elevational gradient in predictable ways. However, different taxa respond to these factors differently resulting in various proposed models for biodiversity patterns along elevational transects. Using a multi-taxa approach, we investigated the effects of elevation, area, habitat and soil characteristics on species richness, individual abundance and species composition of six groups of ground-dwelling arthropods along four transect lines in the Swiss National Park and its surroundings (Eastern Alps). Spiders, millipedes, centipedes, ants, ground beetles and rove beetles were sampled using standardized methods (pitfall traps, cardboard traps, visual search) in 65 sites spanning an elevational range from 1800 to 2750 m a.s.l.. A total of 14,782 individuals comprising 248 species were collected (86 spider, 74 rove beetle, 34 ground beetle, 21 millipede, 19 centipede and 14 ant species). Linear mixed model-analysis revealed that rarefied species richness in five out of the six arthropod groups was affected by elevation (the quadratic term of elevation provided the best fit in most cases). We found three different patterns (linear decrease in centipedes, low elevation plateau followed by a decrease in ants and rove beetles, and midpoint peak in spiders and millipedes). These patterns were only partially mirrored when considering individual abundance. Elevation influenced species composition in all groups examined. Overall, elevation was the most important factor explaining the diversity patterns, while most local habitat and soil characteristics have little influence on these patterns. Our study supports the importance of using multi-taxa approaches when examining effects of elevational gradients. Considering only a single group may result in misleading findings for overall biodiversity.


Subject(s)
Ants , Arthropods , Coleoptera , Spiders , Altitude , Animals , Ants/physiology , Biodiversity , Ecosystem , Soil , Switzerland
7.
Front Plant Sci ; 12: 703674, 2021.
Article in English | MEDLINE | ID: mdl-34512688

ABSTRACT

Silvicultural interventions such as strip cuttings can change the resource availability of the edge trees. This may alter tree allometry, as light regime, water, and nutrient availability can change at the forest edge. Increased root growth may optimize resource uptake and/or enhance tree anchorage to withstand the altered wind regime. However, little is known about the patterns of the root-shoot allometric responses to strip cuttings. In three alpine stands differing in climate, site productivity, and stand characteristics, we selected 71 Norway spruce trees and took increment cores from stems, root collars, and main roots. This enabled us to study changes in the long-term root-stem allometry for 46 years and short-term allometric responses to intervention. The effects of cutting were compared between edge trees and trees from the stand interior in 10 years before and after the intervention. The long-term allocation to roots increased with stem diameter, with the strongest effects on the regularly managed stand with the tallest and largest trees. These results support the allometric biomass partitioning theory, which postulates resource allocation patterns between different plant organs to depend on plant size. Strip cutting on north-facing slopes boosted edge-tree growth in all plant compartments and enhanced allocation to roots. This change in allometry started 2 years after cutting but disappeared 7-8 years later. In the post-cutting period, the highest root-shoot increase was observed in the small trees independent of the site. This indicates the change in growing conditions to have the strongest effects in formerly suppressed trees. Thus, the effect of such acclimation on the wind firmness of subdominant spruce trees is a question with high importance for optimizing cutting layouts in lowering post-cutting vulnerability to disturbance. The results from this case study contribute to a better understanding of the structural acclimation of spruce trees from high-elevation forests to new forest edges. However, for a more mechanistic understanding of environmental drivers, further analyses of tree-ring stable isotopes are recommended.

8.
Ecol Appl ; 31(3): e02271, 2021 04.
Article in English | MEDLINE | ID: mdl-33615604

ABSTRACT

It is generally assumed that restoring biodiversity will enhance diversity and ecosystem functioning. However, to date, it has rarely been evaluated whether and how restoration efforts manage to rebuild biodiversity and multiple ecosystem functions (ecosystem multifunctionality) simultaneously. Here, we quantified how three restoration methods of increasing intervention intensity (harvest only < topsoil removal < topsoil removal + propagule addition) affected grassland ecosystem multifunctionality 22 yr after the restoration event. We compared restored with intensively managed and targeted seminatural grasslands based on 13 biotic and abiotic, above- and belowground properties. We found that all three restoration methods improved ecosystem multifunctionality compared to intensively managed grasslands and developed toward the targeted seminatural grasslands. However, whereas higher levels of intervention intensity reached ecosystem multifunctionality of targeted seminatural grasslands after 22 yr, lower intervention missed this target. Moreover, we found that topsoil removal with and without seed addition accelerated the recovery of biotic and aboveground properties, and we found no negative long-term effects on abiotic or belowground properties despite removing the top layer of the soil. We also evaluated which ecosystem properties were the best indicators for restoration success in terms of accuracy and cost efficiency. Overall, we demonstrated that low-cost measures explained relatively more variation of ecosystem multifunctionality compared to high-cost measures. Plant species richness was the most accurate individual property in describing ecosystem multifunctionality, as it accounted for 54% of ecosystem multifunctionality at only 4% of the costs of our comprehensive multifunctionality approach. Plant species richness is the property that typically is used in restoration monitoring by conservation agencies. Vegetation structure, soil carbon storage and water-holding capacity together explained 70% of ecosystem multifunctionality at only twice the costs (8%) of plant species richness, which is, in our opinion, worth considering in future restoration monitoring projects. Hence, our findings provide a guideline for land managers how they could obtain an accurate estimate of aboveground-belowground ecosystem multifunctionality and restoration success in a highly cost-efficient way.


Subject(s)
Ecosystem , Grassland , Biodiversity , Plants , Soil
9.
New Phytol ; 229(5): 2901-2916, 2021 03.
Article in English | MEDLINE | ID: mdl-33107606

ABSTRACT

Alpine habitats are one of the most vulnerable ecosystems to environmental change, however, little information is known about the drivers of plant-fungal interactions in these ecosystems and their resilience to climate change. We investigated the influence of the main drivers of ectomycorrhizal (EM) fungal communities along elevation and environmental gradients in the alpine zone of the European Alps and measured their degree of specialisation using network analysis. We sampled ectomycorrhizas of Dryas octopetala, Bistorta vivipara and Salix herbacea, and soil fungal communities at 28 locations across five countries, from the treeline to the nival zone. We found that: (1) EM fungal community composition, but not richness, changes along elevation, (2) there is no strong evidence of host specialisation, however, EM fungal networks in the alpine zone and within these, EM fungi associated with snowbed communities, are more specialised than in other alpine habitats, (3) plant host population structure does not influence EM fungal communities, and (4) most variability in EM fungal communities is explained by fine-scale changes in edaphic properties, like soil pH and total nitrogen. The higher specialisation and narrower ecological niches of these plant-fungal interactions in snowbed habitats make these habitats particularly vulnerable to environmental change in alpine ecosystems.


Subject(s)
Mycobiome , Mycorrhizae , Biodiversity , Ecosystem , Fungi , Soil , Soil Microbiology
10.
Front Microbiol ; 8: 2066, 2017.
Article in English | MEDLINE | ID: mdl-29123508

ABSTRACT

Historical datasets of living communities are important because they can be used to document creeping shifts in species compositions. Such a historical data set exists for alpine fungi. From 1941 to 1953, the Swiss geologist Jules Favre visited yearly the region of the Swiss National Park and recorded the occurring fruiting bodies of fungi >1 mm (so-called "macrofungi") in the alpine zone. Favre can be regarded as one of the pioneers of alpine fungal ecology not least because he noted location, elevation, geology, and associated plants during his numerous excursions. However, some relevant information is only available in his unpublished field-book. Overall, Favre listed 204 fungal species in 26 sampling sites, with 46 species being previously unknown. The analysis of his data revealed that the macrofungi recorded belong to two major ecological groups, either they are symbiotrophs and live in ectomycorrhizal associations with alpine plant hosts, or they are saprotrophs and decompose plant litter and soil organic matter. The most frequent fungi were members of Inocybe and Cortinarius, which form ectomycorrhizas with Dryas octopetala or the dwarf alpine Salix species. The scope of the present study was to combine Favre's historical dataset with more recent data, either with the "SwissFungi" database or with data from major studies of the French and German Alps, and with the data from novel high-throughput DNA sequencing techniques of soils from the Swiss Alps. Results of the latter application revealed, that problems associated with these new techniques are manifold and species determination remains often unclear. At this point, the fungal taxa collected by Favre and deposited as exsiccata at the "Conservatoire et Jardin Botaniques de la Ville de Genève" could be used as a reference sequence dataset for alpine fungal studies. In conclusion, it can be postulated that new improved databases are urgently necessary for the near future, particularly, with regard to investigating fungal communities from alpine regions using new techniques.

11.
Ecol Appl ; 26(8): 2463-2477, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27787924

ABSTRACT

Large uncertainties characterize forest development under global climate change. Although recent studies have found widespread increased tree mortality, the patterns and processes associated with tree death remain poorly understood, thus restricting accurate mortality predictions. Yet, projections of future forest dynamics depend critically on robust mortality models, preferably based on empirical data rather than theoretical, not well-constrained assumptions. We developed parsimonious mortality models for individual beech (Fagus sylvatica L.) trees and evaluated their potential for incorporation in dynamic vegetation models (DVMs). We used inventory data from nearly 19,000 trees from unmanaged forests in Switzerland, Germany, and Ukraine, representing the largest dataset used to date for calibrating such models. Tree death was modelled as a function of size and growth, i.e., stem diameter (dbh) and relative basal area increment (relBAI), using generalized logistic regression accounting for unequal re-measurement intervals. To explain the spatial and temporal variability in mortality patterns, we considered a large set of environmental and stand characteristics. Validation with independent datasets was performed to assess model generality. Our results demonstrate strong variability in beech mortality that was independent of environmental or stand characteristics. Mortality patterns in Swiss and German strict forest reserves were dominated by competition processes as indicated by J-shaped mortality over tree size and growth. The Ukrainian primeval beech forest was additionally characterized by windthrow and a U-shaped size-mortality function. Unlike the mortality model based on Ukrainian data, the Swiss and German models achieved good discrimination and acceptable transferability when validated against each other. We thus recommend these two models to be incorporated and examined in DVMs. Their mortality predictions respond to climate change via tree growth, which is sufficient to capture the adverse effects of water availability and competition on the mortality probability of beech under current conditions.


Subject(s)
Climate Change , Fagus , Forests , Ecosystem , Switzerland
12.
Nucleic Acids Res ; 44(3): e24, 2016 Feb 18.
Article in English | MEDLINE | ID: mdl-26400159

ABSTRACT

The protist parasite Trypanosoma brucei causes Human African trypanosomiasis (HAT), which threatens millions of people in sub-Saharan Africa. Without treatment the infection is almost always lethal. Current drugs for HAT are difficult to administer and have severe side effects. Together with increasing drug resistance this results in urgent need for new treatments. T. brucei and other trypanosomatid pathogens require a distinct form of post-transcriptional mRNA modification for mitochondrial gene expression. A multi-protein complex called the editosome cleaves mitochondrial mRNA, inserts or deletes uridine nucleotides at specific positions and re-ligates the mRNA. RNA editing ligase 1 (REL1) is essential for the re-ligation step and has no close homolog in the mammalian host, making it a promising target for drug discovery. However, traditional assays for RELs use radioactive substrates coupled with gel analysis and are not suitable for high-throughput screening of compound libraries. Here we describe a fluorescence-based REL activity assay. This assay is compatible with a 384-well microplate format and sensitive, satisfies statistical criteria for high-throughput methods and is readily adaptable for other polynucleotide ligases. We validated the assay by determining kinetic properties of REL1 and by identifying REL1 inhibitors in a library of small, pharmacologically active compounds.


Subject(s)
Carbon-Oxygen Ligases/genetics , High-Throughput Screening Assays/methods , Mitochondrial Proteins/genetics , Trypanosoma brucei brucei/enzymology , Animals , Carbon-Oxygen Ligases/metabolism , Catalytic Domain , Kinetics , Mitochondrial Proteins/metabolism , Suramin/metabolism
13.
FEBS Lett ; 589(18): 2283-9, 2015 Aug 19.
Article in English | MEDLINE | ID: mdl-26193422

ABSTRACT

D-Alanylation of lipoteichoic acids plays an important role in modulating the properties of Gram-positive bacteria cell walls. The D-alanyl carrier protein DltC from Bacillus subtilis has been solved in apo- and two cofactor-modified holo-forms, whereby the entire phosphopantetheine moiety is defined in one. The atomic resolution of the apo-structure allows delineation of alternative conformations within the hydrophobic core of the 78 residue four helix bundle. In contrast to previous reports for a peptidyl carrier protein from a non-ribosomal peptide synthetase, no obvious structural differences between apo- and holo-DltC forms are observed. Solution NMR spectroscopy confirms these findings and demonstrates in addition that the two forms exhibit similar backbone dynamics on the ps-ns and ms timescales.


Subject(s)
Apoproteins/chemistry , Bacillus subtilis , Bacterial Proteins/chemistry , Carrier Proteins/chemistry , Crystallography, X-Ray , Models, Molecular , Protein Conformation
14.
Ecology ; 96(12): 3312-22, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26909436

ABSTRACT

Aboveground herbivores have strong effects on grassland nitrogen (N) cycling. They can accelerate or slow down soil net N mineralization depending on ecosystem productivity and grazing intensity. Yet, most studies only consider either ungulates or invertebrate herbivores, but not the combined effect of several functionally different vertebrate and invertebrate herbivore species or guilds. We assessed how a diverse herbivore community affects net N mineralization in subalpine grasslands. By using size-selective fences, we progressively excluded large, medium, and small mammals, as well as invertebrates from two vegetation types, and assessed how the exclosure types (ET) affected net N mineralization. The two vegetation types differed in long-term management (centuries), forage quality, and grazing history and intensity. To gain a more mechanistic understanding of how herbivores affect net N mineralization, we linked mineralization to soil abiotic (temperature; moisture; NO3-, NH4+, and total inorganic N concentrations/pools; C, N, P concentrations; pH; bulk density), soil biotic (microbial biomass; abundance of collembolans, mites, and nematodes) and plant (shoot and root biomass; consumption; plant C, N, and fiber content; plant N pool) properties. Net N mineralization differed between ET, but not between vegetation types. Thus, short-term changes in herbivore community composition and, therefore, in grazing intensity had a stronger effect on net N mineralization than long-term management and grazing history. We found highest N mineralization values when only invertebrates were present, suggesting that mammals had a negative effect on net N mineralization. Of the variables included in our analyses, only mite abundance and aboveground plant biomass explained variation in net N mineralization among ET. Abundances of both mites and leaf-sucking invertebrates were positively correlated with aboveground plant biomass, and biomass increased with progressive exclusion. The negative impact of mammals on net N mineralization may be related partially to (1) differences in the amount of plant material (litter) returned to the belowground subsystem, which induced a positive bottom-up effect on mite abundance, and (2) alterations in the amount and/or distribution of dung, urine, and food waste. Thus, our results clearly show that short-term alterations of the aboveground herbivore community can strongly impact nutrient cycling within ecosystems independent of long-term management and grazing history.


Subject(s)
Grassland , Herbivory/physiology , Invertebrates/physiology , Nitrogen/chemistry , Plant Development/physiology , Vertebrates/physiology , Animals , Biomass , Nitrogen/metabolism , Plants/classification , Soil , Switzerland
15.
ISME J ; 8(1): 226-44, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24030594

ABSTRACT

Soil compaction is a major disturbance associated with logging, but we lack a fundamental understanding of how this affects the soil microbiome. We assessed the structural resistance and resilience of the microbiome using a high-throughput pyrosequencing approach in differently compacted soils at two forest sites and correlated these findings with changes in soil physical properties and functions. Alterations in soil porosity after compaction strongly limited the air and water conductivity. Compaction significantly reduced abundance, increased diversity, and persistently altered the structure of the microbiota. Fungi were less resistant and resilient than bacteria; clayey soils were less resistant and resilient than sandy soils. The strongest effects were observed in soils with unfavorable moisture conditions, where air and water conductivities dropped well below 10% of their initial value. Maximum impact was observed around 6-12 months after compaction, and microbial communities showed resilience in lightly but not in severely compacted soils 4 years post disturbance. Bacteria capable of anaerobic respiration, including sulfate, sulfur, and metal reducers of the Proteobacteria and Firmicutes, were significantly associated with compacted soils. Compaction detrimentally affected ectomycorrhizal species, whereas saprobic and parasitic fungi proportionally increased in compacted soils. Structural shifts in the microbiota were accompanied by significant changes in soil processes, resulting in reduced carbon dioxide, and increased methane and nitrous oxide emissions from compacted soils. This study demonstrates that physical soil disturbance during logging induces profound and long-lasting changes in the soil microbiome and associated soil functions, raising awareness regarding sustainable management of economically driven logging operations.


Subject(s)
Bacterial Physiological Phenomena , Fungi/physiology , Microbiota/physiology , Soil Microbiology , Bacteria/classification , Bacteria/genetics , Biodiversity , DNA, Ribosomal Spacer/genetics , Fungi/classification , Fungi/genetics , Porosity , RNA, Ribosomal, 16S/genetics , Soil/chemistry , Time Factors
16.
J Mol Biol ; 425(8): 1318-29, 2013 Apr 26.
Article in English | MEDLINE | ID: mdl-23353830

ABSTRACT

The nuclear pore complex is the sole mediator of bidirectional transport between the nucleus and cytoplasm. Nup358 is a metazoan-specific nucleoporin that localizes to the cytoplasmic filaments and provides several binding sites for the mobile nucleocytoplasmic transport machinery. Here we present the crystal structure of the C-terminal domain (CTD) of Nup358 at 1.75Å resolution. The structure reveals that the CTD adopts a cyclophilin-like fold with a non-canonical active-site configuration. We determined biochemically that the CTD possesses weak peptidyl-prolyl isomerase activity and show that the active-site cavity mediates a weak association with the human immunodeficiency virus-1 capsid protein, supporting its role in viral infection. Overall, the surface is evolutionarily conserved, suggesting that the CTD serves as a protein-protein interaction platform. However, we demonstrate that the CTD is dispensable for nuclear envelope localization of Nup358, suggesting that the CTD does not interact with other nucleoporins.


Subject(s)
Molecular Chaperones/chemistry , Molecular Chaperones/metabolism , Nuclear Pore Complex Proteins/chemistry , Nuclear Pore Complex Proteins/metabolism , Crystallography, X-Ray , HIV Core Protein p24/metabolism , Humans , Models, Molecular , Peptidylprolyl Isomerase/metabolism , Protein Conformation
17.
Appl Environ Microbiol ; 77(17): 6060-8, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21742929

ABSTRACT

Temperate forest soils are usually efficient sinks for the greenhouse gas methane, at least in the absence of significant amounts of methanogens. We demonstrate here that trafficking with heavy harvesting machines caused a large reduction in CH(4) consumption and even turned well-aerated forest soils into net methane sources. In addition to studying methane fluxes, we investigated the responses of methanogens after trafficking in two different forest sites. Trafficking generated wheel tracks with different impact (low, moderate, severe, and unaffected). We found that machine passes decreased the soils' macropore space and lowered hydraulic conductivities in wheel tracks. Severely compacted soils yielded high methanogenic abundance, as demonstrated by quantitative PCR analyses of methyl coenzyme M reductase (mcrA) genes, whereas these sequences were undetectable in unaffected soils. Even after a year after traffic compression, methanogen abundance in compacted soils did not decline, indicating a stability of methanogens here over time. Compacted wheel tracks exhibited a relatively constant community structure, since we found several persisting mcrA sequence types continuously present at all sampling times. Phylogenetic analysis revealed a rather large methanogen diversity in the compacted soil, and most mcrA gene sequences were mostly similar to known sequences from wetlands. The majority of mcrA gene sequences belonged either to the order Methanosarcinales or Methanomicrobiales, whereas both sites were dominated by members of the families Methanomicrobiaceae Fencluster, with similar sequences obtained from peatland environments. The results show that compacting wet forest soils by heavy machinery causes increases in methane production and release.


Subject(s)
Biodiversity , Methane/analysis , Soil Microbiology , Soil Pollutants/analysis , Soil/chemistry , Cluster Analysis , DNA, Archaeal/chemistry , DNA, Archaeal/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Genes, rRNA , Molecular Sequence Data , Oxidoreductases/genetics , Phylogeny , RNA, Archaeal/genetics , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Sequence Homology, Nucleic Acid , Trees
18.
Heart Surg Forum ; 14(2): E137-8, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21521678

ABSTRACT

Aortic dissection is a very serious condition mainly caused by degenerative diseases of the connective tissue and hypertension. Ascending aortic dissection as a consequence of aortitis in association with giant cell arteritis is very rarely seen. In this article we report on the successful surgical repair of a Stanford type A aortic dissection caused by giant cell arteritis in a 74-year-old patient. We could visualize this dissection via echocardiography and computed tomography. Histopathology confirmed this rare complication of giant cell aortitis.


Subject(s)
Aorta/surgery , Aortic Dissection/etiology , Giant Cell Arteritis/complications , Aged , Aortic Dissection/pathology , Aortic Dissection/surgery , Aorta/pathology , Giant Cell Arteritis/pathology , Humans , Male
19.
Tree Physiol ; 29(4): 541-50, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19203972

ABSTRACT

In recent decades, Scots pine (Pinus sylvestris L.) forests in inner-Alpine dry valleys of Switzerland have suffered from drought and elevated temperatures, resulting in a higher mortality rate of trees than the mean mortality rate in Switzerland. We investigated the responses of fine roots (standing crop, morphological and physiological features) to water supply in a Scots pine forest in the Rhone valley. Before irrigation started in 2003, low- and high-productivity Scots pine trees were selected based on their crown transparency. The fine root standing crop measured in spring from 2003 to 2005 was unaffected by the irrigation treatment. However, irrigation significantly enhanced the fine root standing crop during the vegetation period when values from spring were compared with values from fall in 2005. Irrigation slightly increased specific root length but decreased root tissue density. Fine root O2-consumption capacity decreased slightly in response to the irrigation treatment. Using ingrowth cores to observe the responses of newly produced fine roots, irrigation had a significantly positive effect on the length of fine roots, but there were no differences between the low- and high-productivity trees. In contrast to the weak response of fine roots to irrigation, the aboveground parts responded positively to irrigation with more dense crowns. The lack of a marked response of the fine root biomass to irrigation in the low- and high-productivity trees suggests that fine roots have a high priority for within-tree carbon allocation.


Subject(s)
Pinus sylvestris/metabolism , Water/metabolism , Biomass , Carbon/metabolism , Climate , Droughts , Meteorological Concepts , Oxygen/metabolism , Pinus sylvestris/anatomy & histology , Pinus sylvestris/growth & development , Plant Roots/anatomy & histology , Plant Roots/growth & development , Plant Roots/metabolism , Soil , Switzerland , Temperature
20.
J Biol Chem ; 283(47): 32484-91, 2008 Nov 21.
Article in English | MEDLINE | ID: mdl-18784082

ABSTRACT

DltA, the D-alanine:D-alanyl carrier protein ligase responsible for the initial step of lipoteichoic acid D-alanylation in Gram-positive bacteria, belongs to the adenylation domain superfamily, which also includes acetyl-CoA synthetase and the adenylation domains of non-ribosomal synthetases. The two-step reaction catalyzed by these enzymes (substrate adenylation followed by transfer to the reactive thiol group of CoA or the phosphopantheinyl prosthetic group of peptidyl carrier proteins) has been suggested to proceed via large scale rearrangements of structural domains within the enzyme. The structures of DltA reported here reveal the determinants for D-Ala substrate specificity and confirm that the peptidyl carrier protein-activating domains are able to adopt multiple conformational states, in this case corresponding to the thiolation reaction. Comparisons of available structures allow us to propose a mechanism whereby small perturbations of finely balanced metastable structural states would be able to direct an ordered formation of non-ribosomal synthetase products.


Subject(s)
Bacillus subtilis/enzymology , Bacterial Proteins/chemistry , Carbon-Oxygen Ligases/chemistry , Cloning, Molecular , Crystallography, X-Ray/methods , Escherichia coli/metabolism , Models, Chemical , Molecular Conformation , Mutagenesis , Peptides/chemistry , Protein Conformation , Protein Structure, Tertiary , Ribosomes/chemistry , Stereoisomerism , Substrate Specificity , Sulfhydryl Compounds
SELECTION OF CITATIONS
SEARCH DETAIL
...